SYNTHESIS OF 1-ETHOXY-2-ARYLACETYLENES FROM 1-ETHOXY-2-IODOACETYLENE AND ARYLCOPPER(I) COMPOUNDS*.

(Received in UK 15 February 1978; accepted for publication 3 March 1978)

Some years ago Oliver and Walton found that a wide range of arylcopper(I) reagents were capable of coupling with iodoethynyl(trimethyl)silane to give arylethynyl(trimethyl)silanes in moderate to good yields (29-61%)¹. More recently ², Normant et al. showed that vinylic organocopper(I) species gave a similar reaction with other 1-halogeno-1-alkynes.

We now report a novel synthesis of 1-ethoxy-2-arylacetylenes $(\underline{3})$ based on the interaction of 1-ethoxy-2-iodoacetylene $(\underline{1})^3$ and arylcopper(I) reagents $(\underline{2})$ in a mixture of tetrahydrofuran (THF) and dimethylformamide (DMF) or hexamethyl-phosphoric triamide (HMPT). Without these co-solvents products 3 can be obtained too , but the conversion is less smooth.

EtO-C
$$\equiv$$
C-I + Ar-Cu.MgBr₂ or THF-DMF

(1) (2) (3)

Representative examples are summarized in the Table.

Hitherto only the preparation of some 1-alkoxy-2-phenylacetylenes has been reported in the literature, starting from bromoethoxystyrenes 4 , 2-chloro-2-fluorostyrene 5 or 1-chloro-2-phenylacetylene 6 , but the yields obtained were often low and difficulties were encountered with the purification of the acetylenic ethers in a number of cases. In our opinion the presented route to 3, which is complementary to the Stephens Castro coupling between an aryliodide and a cuprous alkynylide, is an attractive alternative to the other methods mentioned. The procedure for the conversion of (1) into (3) is as follows: To a stirred suspension of (2,0.050 mol) in THF-DMF or in THF-HMPT (5:1 (v/v), 200 ml) the iodoacetylene (1,0.050 mol) was added at -40°C and the temperature of the reaction mixture was slowly raised (one hour) to $+20^{\circ}\text{C}$. Subsequently, the reaction mixture was poured into a saturated aqueous solution of NH $_4$ Cl (200 ml) containing NaCN (3g). The product was isolated by extraction with diethyl ether ($3 \times 100 \text{ ml}$). After washing the combined extracts with water and drying over MgSO $_4$ the solvent was evaporated in vacuo and the residue purified as indicated in the Table.

Table	Reaction of	(1)	with	${\tt arylcopper(I)compounds}$	(<u>2</u>) ⁸	to	give	the	1-alkynyl	ethers	<u>(3)</u>

% yield of $(3)^{b}$	Physical constants of (3)					
	B.p.(OC/torr)	n _D 20				
60	53-55 / 0.01	1.5410				
55	77-79 / 0.01	1.5470				
53	d	1.5571				
32	d	1.5369				
	60 55 53	B.p.(OC/torr) 60 53-55 / 0.01 55 77-79 / 0.01 53 d	B.p.(°C/torr)			

- a) The arylcopper reagents were prepared by stirring Ar-MgBr (0.050 mol) with copper(I) bromide (0.050 mol) during 30 minutes in THF (180 ml) at 0°C.
- b) Yields refer to purified products.
- c) All compounds (3) showed an absorption at 2260 cm⁻¹ in the IR-spectrum. The ¹H NMR data were consistent with the proposed structure.
- d) Destillation caused a strong decomposition. Purification was carried out by column-chromatography $\left[\text{SiO}_2\right]$, pentane / CH_2Cl_2 : 85 / 15 (v/v)

The starting ether $(\underline{1})^3$ was obtained in high yield (90%) by converting ethoxyacetylene (0.010 mol) with methyl lithium (0.010 mol , prepared from methyl iodide and lithium) into the corresponding lithium alkynylide , using diethyl ether as a solvent (200 ml) , followed by addition of iodine (0.010 mol) at - 50° C.

 $\frac{Acknowledgement}{Research \ (\ SON\)}.$ This investigation was supported by the Netherlands Foundation for Chemical

References.

- * Chemistry of Acetylenic Ethers 113.
- R.Oliver and D.R.M.Walton , Tetrahedron Lett. , 1972 , 5209.
- 2. J.F.Normant , A.Commercon and J.Villieras , ibid. , 1975 , 1465.
- L.Brandsma , H.J.T.Bos and J.F.Arens , in "Chemistry of Acetylenes" ,M.G.Viehe, Ed., Marcel Dekker , New York , N.Y. 1969 , Chap 11.
- 4. T.L.Jacobs and W.R.Scott , Jr. , J.Amer Chem.Soc., 75 , 5497 (1953).
- 5. H.G. Viehe , Angew. Chem. , 75 , 638 (1963).
- 6. R.Tanaka and S.I.Miller , Tetrahedron Lett. , 1971 , 1753 .
- R.D.Stephens and C.E.Castro ,J.Org.Chem. , <u>28</u> , 3313 (1963) ; C.E.Castro , R.Havlin ,
 V.K.Honward , A.Malte and S.Noje , J.Amer.Chem.Soc . , <u>91</u> , 6464 (1969).